

IONIC BONDING

Ionic Bond

Bond between 2 ions (metal + nonmetal)

"Opposites attract": + and - cancel out!

Ionic compounds are NEUTRAL!

NaCI

Al₂S₃

MgCl₂

Counting Atoms

The subscript tells you the number of the atom it is beside

No number written = 1 atom

(NH₄)₂O
1 atom of
Oxygen

2 x 1 = 2 atoms₂ x 4 = 8 atoms
of Nitrogen of Hydrogen

Writing Formula Units

Ionic compounds are <u>neutral</u> – charges of ions must cancel out

Example: Sodium chloride

Na[‡] Cl

NaCl

Example: Aluminum bromide

AlBr₃

Writing Formula Units

Ionic compounds are <u>neutral</u> – charges of ions must cancel out

Crisscross Method:

Example: Sodium chloride Example: Aluminum bromide

NI_C0

AlBa

*When the charge is the same magnitude, it is not written

Writing Formula Units

Ionic compounds are <u>neutral</u> – charges of ions must cancel out

Crisscross Method...with Transition Metals:

Example: Tin(IV) chloride

Example: Manganese(II) sulfide

 Mn^{+2}

MnS

Snew Sn Cly

Writing Formula Units

Ionic compounds are <u>neutral</u> – charges of ions must cancel out

Crisscross Method...with Polyatomic Ions:

Polyatomic ion = group of elements with a charge (more than 1 capital letter)

Example: Magnesium hydroxide

Example: Lead(III) phosphate

^{*}Parentheses go around polyatomics if they take a subscript

Naming Ionic Compounds

Positive ion first, negative ion second...

Positive ion: element/ion name (roman numeral if T.M.)
Negative ion: change element name ending to "ide,"
or write polyatomic ion name

KBr $FeCl_3$ $Al(OH)_3$ $CuSO_4$

Potassium Iron(III) Aluminum Copper(II) bromide chloride hydroxide sulfate

Check for polyatomics and transitions