IONIC BONDING #### **Ionic Bond** Bond between 2 ions (metal + nonmetal) "Opposites attract": + and - cancel out! Ionic compounds are NEUTRAL! **NaCI** Al₂S₃ MgCl₂ # **Counting Atoms** The subscript tells you the number of the atom it is beside No number written = 1 atom (NH₄)₂O 1 atom of Oxygen 2 x 1 = 2 atoms₂ x 4 = 8 atoms of Nitrogen of Hydrogen ## **Writing Formula Units** Ionic compounds are <u>neutral</u> – charges of ions must cancel out Example: Sodium chloride Na[‡] Cl NaCl Example: Aluminum bromide AlBr₃ ### **Writing Formula Units** Ionic compounds are <u>neutral</u> – charges of ions must cancel out **Crisscross Method:** Example: Sodium chloride Example: Aluminum bromide NI_C0 AlBa *When the charge is the same magnitude, it is not written ## **Writing Formula Units** Ionic compounds are <u>neutral</u> – charges of ions must cancel out **Crisscross Method...with Transition Metals:** Example: Tin(IV) chloride Example: Manganese(II) sulfide Mn^{+2} MnS Snew Sn Cly #### **Writing Formula Units** Ionic compounds are <u>neutral</u> – charges of ions must cancel out Crisscross Method...with Polyatomic Ions: Polyatomic ion = group of elements with a charge (more than 1 capital letter) Example: Magnesium hydroxide Example: Lead(III) phosphate ^{*}Parentheses go around polyatomics if they take a subscript ### **Naming Ionic Compounds** Positive ion first, negative ion second... Positive ion: element/ion name (roman numeral if T.M.) Negative ion: change element name ending to "ide," or write polyatomic ion name KBr $FeCl_3$ $Al(OH)_3$ $CuSO_4$ Potassium Iron(III) Aluminum Copper(II) bromide chloride hydroxide sulfate ***Check for polyatomics and transitions***